Rock magnetic properties of enderbites in Gaisin Block of Ukrainian Shield

M Reshetnyk

Abstract
The actual problems of detail studying of geological structures of the Ukrainian Precambrian Shield (US) were used. The aim of the work was to verify the possibility mapping of xenoliths of enderbytes of the abnormal magnetic field. The magnetic susceptibility Curie points of ferromagnetic minerals and other properties of enderbytes were investigated. It is shown that the studies enderbites not create high positive anomalies of the magnetic field, and are actually "dumb" in the anomalous magnetic field. On the prospect of suggested further study of those areas where high positive magnetic field anomalies coincide with places spread enderbyte.

Keywords: rock magnetic properties, enderbites, Ukrainian shield

1. Introduction
In expositions of Ukrainian Precambrian Shield (US) due to magnitometric methods during state geological testing in 1960-1980 years were practically not investigated. Now, an actual problem of geological re-carting of US our government is declared [7]. The investigation of the US with new metods besid on more detailed and complexes geology-geomagnetic become actual. In this article athors new detalin complex magnitometric metods [metod MMS] are used fo investigation xenoliths of the enderbytes. The basic question of article is how enderbytes are sited in Gaisin block of US (along rivers Southern Boug). It is known [31] because rocks in Gaisin block were cardinally changed during metamorphism but enderbytes is very ancient rocks that weren’t changed. Therefore, studying of enderbytes magnetic properties is important for fundamental investigation of Precambrian rocks - that is result of appearance and the first formation of the Earth's crust. The rocks in the US are mixed in a difficult correlation with each other. Is very difficult to set on map the boundaries of various rocks, because they very rarely come to the surface and are almost invisible. Almost all Precambrian basement of US is hidden and covered by layers of chalk, clay, sandstone. The geologists-cartographs detected the Precambrian basement thorough abnormal magnetic field induction and gravitational anomalies analysed. Sediments rocks hasn’t many magnetite minerals, therefore their rocks do not produced anomalies of magnetic field. But the different granits of US can has a different numbers of ferromagnetic minerals and formed different intensive magnetic field anomalies. The old methods for interpretation adnormal magnetic field are used different petrografic groups it has some magnetic properties of samples for all area. Today, investigation samples with concretic exposures (different petrografic composition) in complex with observation magnetic field in this territory [complex metod] and this material are used for complex geological analis of adnormal magnetic field. Unchanged enderbytes xenoliths in Gaisin block are present conserved. Enderbyte consists practically from all granite-forming minerals. There are a quartz, hyperstene, biotite and feldspar. The difference is in content of feldspar – in enderbyte he not consist kaly K. This is formad green-gray colour enderbyte, whenever granites are gray or pink. Enderbyte has unique macrostructures [8, 34].

2. Material and Methods
Study area. In this article investigation area in the US Ros-Tykych megablock in the Uman smoll blockes in the Gaisin very smoll blockes. Gaisin blockes betwin Gayvoron and Podol block (parts of Dnistrov-Bug megablock). Nemirov and Obodnov fractures Gaisin from Podol block is separed. Dashev fracture Gaisin from Podol block is separated.
Dashev fracture Gaisin from all other Uman block is separated (Figure 1).

![Geological structure](image1.png)

Fig 1: Geological structure position of investigation area is big square in global geological structure of Ukrainian shield

Gaisin block consists of unique composite rocks, it is the Gaisin complex \[30, 31\]. Gaisin complex it is very motley becous plagio-granits and grano-diorites is alternated in one metrs and contains xenolites of gneis, kristal slate, enderbyte. Xenolites of enderbyte is unique rocks in Gaisin complex. On all territory of Gaisin block is one exposure of enderbytes. Enderbytes exposure located on board of river Gorodishe (to north of the village Sytkivci, Vinniza region of Ukraine, coordinates latitude 48 55 42.01 N, longitude 29 11 30.51 E). It exposure of enderbytes in this article is investigated. The enderbytes exposure located on Sutkivci territory geological mapping. Katuk and all Sutkivci territory were geological investigated and created geological map in scale 1:10000 \[4\]. We geological map with magnetic anomalies field map are combined (Figure 2).

![Geological map combined with anomalies](image2.png)

Fig 2: Fragment of geological map combined with anomalies magnetic field T map of area among villages Vysha Kropyvnia, Rubigne and Sytkivci (according \[4\]): 1 – rose granites, 2 – enderbytes, 3 – crystals shale, 4,5,6 – isolines of high and low T in nanoteslas nTl, 7 – fracture valid and from geophysical date, 8 – isolines of high gravity field mG, black point – sites of enderbytes exposure

On figure 2 we can see then big xenolites of enderbytes are sited on differet anomalies magnetic field where there is high T (up to 1500 nTl) and low T (-500 nTl). Thus, according \[4\], the source of negative and positive anomalies of magnetic field are same enerbytes. Therefore is actual to study the magnetic properties of enderbytes to determined the nature of such ambiguity reflected in the abnormal magnetic field.

Methodology. In this work the autors new complexing detalised magnitometric method is using by enderbytes
It is a method of magnetic scanning (MMS) which lets use a new possibilities of mapping for high-differentiated sectors of precambridian basement. Magnetic Scanning – it is a complex petro-magnetic method of detail investigation of rocks exposures as we described earlier [9-20]. In this method, laboratoric and “in field” magnetometric investigations are carried out in direct interrelation with each other. At the first stage authors analyzed and correlations “magnetic field - geological structure” appears. At the second stage, magnetometric investigations “in field” are carried out. The detailed measuring of magnetic susceptibility MS were executed by capameter KT-5 (Czech production). The modern counterparts of KT-5 is KT-9. The templates of rose granites and enderbytes were selected. The magnetic susceptibility of their templates were measured on astatic laboratory magnetometer LAM-24 (Czech production). The principle of the sensor is a magnetic field of pattern shifts magnets of astatic system from the equilibrium. It is need to measure in 12 direction and how much deviated astatic system. These measurements allow to calculate the value of the natural remanent magnetization of the sample, its magnetic susceptibility and orientation of remanent magnetization vector.

The magnetic minerals in rocks are definite by thermomagnetic analysis. It consists in consequent measuring of magnetic susceptibility MS of heated template. The laboratoric magnetometer KLY-2 fixes a change MS of sample which heated in an oven. The modern counterparts of KLY-2 is MFK1 Kappabridges of compani AGICO. The density of sample was measured by method of hydrostatic gravimetry. The dynamic of change of magnetic minerals was investigated by rock microscopy.

3. Results and discussion

Over enderbytes exposure on the board of river Gorodishe T ≈–351 nTl. We MS of enderbytes on exposure were observed. 80% of MS numbers is small 0-12·10⁻³ u.SI (fig.3). It isn’t big for granitoides of Gaisin complexes. (Then we were investigated other granitoid exposures near enderbytes exposure we were indentified pink grenites with small MS <10·10⁻³ u.SI and migmatites with big MS >30·10⁻³ u.SI.) Some big MS in the range 40-50·10⁻³ u.SI interspersed in the total weight with low values of MS 0-12·10⁻³ u.SI. It big MS found on the exposure is not regularly (Figure 4). This can be explained by not-homogenous distribution of magnetite that have a several agglomerates in the enderbyte.

![Fig 3: Diagram MS (MS range is ·10⁻³ u.SI) distribution measured by the enderbites exposure](image)

![Fig 4: Limited fragment of enderbites exposition carrier with markers of sites with MS 40-50·10⁻³ u.SI](image)

MS very high values in the range 70-75·10⁻³ u.SI obtained in only three measuring points (MS measured in 620 points on the network with 0.2m increments). MS sample distribution coincided with the distribution of MS measured at the enderbites exposure. The most samples (43 samples out of 54) has low MS (0-12·10⁻³ u.SI) indicating that a small amount of magnetite. At the same time, thermomagnetic analysis shows that their templates have magnetite and pirotine (Figure 5).

![Fig 5: Thermomagnetic curves of templates](image)

The curve MSMS falls sharply after heating to 380 °C indicating the presence pirotine. Ore microscopy revealed the presence of pirotine grames in enderbites. Enderbite samples which was identified pyrrhotite have heightened the Q factor in the range 1.5-2 units (normal 0.4-0.6 units).
These samples has back oriented vector of the remanent magnetization (Figure 6). Mostly vector of the remanent magnetization is oriented in the direction of modern magnetic field (for the coordinates our enderbites exposure declination 11 37.68 inclination 64 66.05).

The low values of the magnetic susceptibility, and hence the induced magnetization are indicated that enderbite will not significantly affect the nature of the anomalous magnetic field. That part enderbite it is inversely oriented remanent magnetization can only weaken the magnetic field. Map of the anomalous magnetic field shows that the enderbites exposure is in the negative conjugate field anomalies. The positive part of the conjugate anomaly is located south-west enderbites exposure (see Figure 2). It is necessary to examine the method of magnetic scanning exposure in the area of positive anomalies of the magnetic field (T>1000nTl) in order to identify the source of that. Place high positive anomalies of the magnetic field coincides with the place enderbite body position (see Figure 2). Our research has shown that enderbites can not create high positive anomalies of the magnetic field. This means that the anomaly magnetic field may cause or other rocks or there enderbites are located on the magnetic properties different from those examined enderbites.

Enderbite density ranges from 2.67 to 2.77 g/sm 3. Enderbite different from those examined enderbites. There enderbites are located on the magnetic properties that the anomaly magnetic field may cause or other rocks or high positive anomalies of the magnetic field. This means that enderbites can not create high positive anomalies of the magnetic field. That part enderbites it is inversely oriented remanent magnetization can only weaken the magnetic field. Map of the anomalous magnetic field shows that the enderbites exposure is in the negative conjugate field anomalies. The positive part of the conjugate anomaly is located south-west enderbites exposure (see Figure 2). It is necessary to examine the method of magnetic scanning exposure in the area of positive anomalies of the magnetic field (T>1000nTl) in order to identify the source of that. Place high positive anomalies of the magnetic field coincides with the place enderbite body position (see Figure 2). Our research has shown that enderbites can not create high positive anomalies of the magnetic field. This means that the anomaly magnetic field may cause or other rocks or there enderbites are located on the magnetic properties different from those examined enderbites.

Enderbite density ranges from 2.67 to 2.77 g/sm 3. Enderbite different from those examined enderbites. There enderbites are located on the magnetic properties that the anomaly magnetic field may cause or other rocks or high positive anomalies of the magnetic field. This means that enderbites can not create high positive anomalies of the magnetic field. That part enderbites it is inversely oriented remanent magnetization can only weaken the magnetic field. Map of the anomalous magnetic field shows that the enderbites exposure is in the negative conjugate field anomalies. The positive part of the conjugate anomaly is located south-west enderbites exposure (see Figure 2). It is necessary to examine the method of magnetic scanning exposure in the area of positive anomalies of the magnetic field (T>1000nTl) in order to identify the source of that. Place high positive anomalies of the magnetic field coincides with the place enderbite body position (see Figure 2). Our research has shown that enderbites can not create high positive anomalies of the magnetic field. This means that the anomaly magnetic field may cause or other rocks or there enderbites are located on the magnetic properties different from those examined enderbites.

Enderbite density ranges from 2.67 to 2.77 g/sm 3. Enderbite different from those examined enderbites. There enderbites are located on the magnetic properties that the anomaly magnetic field may cause or other rocks or high positive anomalies of the magnetic field. This means that enderbites can not create high positive anomalies of the magnetic field. That part enderbites it is inversely oriented remanent magnetization can only weaken the magnetic field. Map of the anomalous magnetic field shows that the enderbites exposure is in the negative conjugate field anomalies. The positive part of the conjugate anomaly is located south-west enderbites exposure (see Figure 2). It is necessary to examine the method of magnetic scanning exposure in the area of positive anomalies of the magnetic field (T>1000nTl) in order to identify the source of that. Place high positive anomalies of the magnetic field coincides with the place enderbite body position (see Figure 2). Our research has shown that enderbites can not create high positive anomalies of the magnetic field. This means that the anomaly magnetic field may cause or other rocks or there enderbites are located on the magnetic properties different from those examined enderbites.

Enderbite density ranges from 2.67 to 2.77 g/sm 3. Enderbite different from those examined enderbites. There enderbites are located on the magnetic properties that the anomaly magnetic field may cause or other rocks or high positive anomalies of the magnetic field. This means that enderbites can not create high positive anomalies of the magnetic field. That part enderbites it is inversely oriented remanent magnetization can only weaken the magnetic field. Map of the anomalous magnetic field shows that the enderbites exposure is in the negative conjugate field anomalies. The positive part of the conjugate anomaly is located south-west enderbites exposure (see Figure 2). It is necessary to examine the method of magnetic scanning exposure in the area of positive anomalies of the magnetic field (T>1000nTl) in order to identify the source of that. Place high positive anomalies of the magnetic field coincides with the place enderbite body position (see Figure 2). Our research has shown that enderbites can not create high positive anomalies of the magnetic field. This means that the anomaly magnetic field may cause or other rocks or there enderbites are located on the magnetic properties different from those examined enderbites.

4. Conclusion

The magnetic susceptibility of enderbites in Gaisin Block are investigated in the first time. It is established that enderbites are weak-magnetic (MS<12·10⁻¹ u.SI) rocks with magnetite+pyrotyine feromagnetic minerals. Experimental data can show that enderbites cannot produce a high induction of magnetic field. On the prospect of suggested further study of those areas where high positive magnetic field anomalies coincide with places spread enderbite.

5. References

7. Lisak AM, Pascenco VG. Sobitovaya formation is the western part of the Ukrainian shield (volume and internal structure), Questions of the theory and practice of conformational studies of the Precambrian lower, Lviv: Vishcha School, 1981, 92-104.
15. Reshetnyk MM, Sukhorada AV, Khomenko RV. Structural and geological information of magnetic

~ 26 ~
scanning of the Precambrian foundation (at the Middle Shield of the Ukrainian Shield, in the region of Gayvoron-Zavallia), News of the Kiev National University of Taras Shevchenko. Geology, 2010; 48:44–48.

38. Sherbakov I. Petrology of Ukrainian Shield, Lvov, ZUKZ, 2005, 362.

43. Кужелов Т.К. Отражение складчатой тектоники Украинского щита в магнитном и гравитационном полях// Советская геология. – 1964, 75–87.

44. Орлик М.И., М.И.Орлова. Обзор результатов исследований палео-магнитной информативности докембрийских коров Украинского щита. Геофизический журнал, 2013, 84-108.

