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Abstract 
Prediction models have been widely used to create a statistical model and understand the relationship 
between environmental variables and soil attributes. The present study was conducted to access the 
spatial variability in soil parameters by using geostatistical techniques. The study area selected was the 
National Capital Territory (NCT) of Delhi within which 22 sampling points were chosen for sample 
collection from the surface layer. The parameters (pH, Electrical Conductivity, Soil Moisture (SM)%, 
and Soil Organic Carbon (SOC) % were analyzed against the prediction estimates, and a regression 
analysis supports the inter-relation of the observed and predicted set of values. The method of 
interpolation used in the study was RBF (Radial Basis Function) which was carried out by using the 
ArcGIS software. The cross-validation of the data set was also analyzed by calculating the Mean and 
Root Mean Square Error (RMSE). According to the results, sample distance is adequate for 
interpolation and the RBF can clearly show the geographical distribution of soil attributes. 
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1. Introduction 
Reliable data on the spatial distribution of soil qualities influencing both landscape processes 
and services are necessary for sustainable land management. The majority of soil maps in 
India were created using traditional methodologies, and little research has been done thus far 
to utilize modern predictive spatial tools. It has become more crucial to spatially map soil 
characteristics at unobserved places using statistical inference. The advent of geostatistics, 
which allowed scientists to precisely interpolate [1] spatial patterns of soil attributes, 
contributed to the usefulness of such maps. In this, geographic and non-spatial soil inference 
systems are combined with field and laboratory observational methods to create and populate 
spatial soil information systems. The spatial distribution [4] of soil properties is determined 
through field sampling, and the soil properties in regions that were not tested are then 
estimated using surface grid point data that have been interpolated. Contrarily, current 
traditional soil survey procedures are lengthy and expensive, and the resulting soil databases 
aren't accurate or comprehensive enough to support extensive and reliable use of soil 
information in spatial data. The variability of soil productivity and soil health is significantly 
influenced by soil nutrients, one of the major factors influencing soil quality. Employing an 
interpolation technique, the distribution of soil parameters can be plotted. The words 
"deterministic" and "stochastic" have been used to identify a variety of spatial interpolation 
[5] techniques that have been created. While stochastic interpolation techniques like kriging, 
RBF, and Inverse Distance Weighing (IDW) approaches do provide assessments of 
prediction error, deterministic interpolation techniques like Thiessen, density estimation, 
inverse-distance-weighted, and splines do not. In interpolation techniques, the spatial 
statistical technique evaluates the autocorrelation that is frequently seen in geographic data, 
where data values from nearby locations are more similar than data values from distant 
locations. In soil science, stochastic [7] methods produce reliable results. The RBF method 
produces results that are more accurate than those produced by kriging and IDW 
interpolation. In this article, RBF is precisely used to create a spatial prediction of the soil 
parameters. 
RBF [3, 17] is a geostatic approach to interpolation that has been shown to be sufficiently 
reliable for extrapolating values from sampled data to non-sampled places. It offers the most 
accurate linear unbiased estimates, details the distribution of the estimation error, and 
demonstrates significant statistical benefits.  
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If a particular set of soil samples adequately represents the 

research area, using the geostatistical interpolation 

technique also lowers the expenses of field collection and 

laboratory analysis. However, sufficient sampling data and 

precise geographical interpolation are necessary for the 

validity of spatial variability maps. RBF algorithms may 

project values that can range above or below the measured 

values' maximum or lowest. The approach’s estimated 

values are based on a mathematical formula that reduces the 

overall curvature of the surface, producing flat surfaces. To 

employ spatial statistical approaches to analyze the soil 

characteristics and geographical distribution [11,16] of soil 

parameters at the surface layer, a pilot study was carried out. 

The objective of the study is to assess the possibilities for 

employing geostatistical techniques to measure soil 

characteristics and their geographical variability in the NCT 

of Delhi. Knowledge of the geographical variability of soil 

nutrients is crucial for the long-term management of soil 

fertility. 

 

2. Methodology 

2.1 Study area: With a 1483 km2 area and an average 

elevation of 213-290 m above mean sea level, Delhi is 

located in a latitudinal extent of 28°23'17''-28°53'00'' N and 

longitudinal extent of 76°50'24''-77°20'37'' E (Figure 1). 

New Delhi, Central Delhi, West Delhi, North Delhi, North 

West Delhi, South Delhi, South East Delhi, East Delhi, 

North East Delhi, and Shahdara are the eleven districts 

that collectively constitute the area. Gurgaon, Noida, 

Faridabad, and Ghaziabad are a few of the nearby satellite 

cities that finally sprang up around Delhi. Uttar Pradesh 

borders it on the east, while Haryana borders it on the north, 

west, and south. From a larger geographical perspective, the 

research region is situated between the Himalayas in the 

north, the Aravalli mountains in the south, and the Yamuna 

River in the east. East Delhi and West Delhi are the two 

areas of the city that are separated by the Yamuna River. 

The ridge, which is a continuation of the Aravalli Range, 

abuts Delhi on its southern boundary and rises to the city's 

center. The majority of the vegetation on the ridge is thorny. 

Due to the aforementioned geographic expanse, there are 

dry, chilly winters (1-3 °C) and summers with extremely 

high peak temperatures (45-47 °C). The primary climatic 

component on which most of the agriculture depends, with 

an average rainfall of 790 mm, is the monsoon season. 

According to the 2011 Census of India, Delhi is home to 

16.75 million people. Delhi has a population density of 

approximately 11,297 people per km2. Delhi's total area 

covered by trees and forests (176.2 km2) is around 296.2 

km2 or roughly 20% of the entire area. The predominant 

vegetation is thorny scrub, which is indicative of semi-arid 

conditions. Alkaline and saline soils make up the majority 

of the prevalent soil type [18]. 

 

2.2 Soil sampling: A stratified random sampling procedure 

was followed for the sample collection (0-10 cm) during 

April 2018. A total of 22 sites were selected and spotted 

with the help of a hand-held GPS E-Trex20. Five soil cores 

were used to collect the undisturbed soil samples and they 

were thoroughly combined to create a composite soil 

sample. For the laboratory analysis samples were air-dried 

and put through a 2 mm sieve. The parameters selected for 

the study include soil pH, soil EC, OM%, and SM%. 

 

2.3 Integration of field and GIS platform: Deterministic 

interpolation methods were used in the ArcGIS software's 

Geostatistical Analyst [10, 20] to create thematic maps of soil 

parameters. The spatial distribution was produced using the 

deterministic interpolation approach with a degree of 

smoothing (radial basis functions, RBF). Projected values 

may vary above or below the maximum or lowest of the 

measured sample values when using the RBF method since 

the surface passes across each measured sample value. 

 

 
 

Fig 1: Study area location with sampling points
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The soil parameters in unsampled places are predicted using 

the RBF model. RBF is used to interpolate data points in a 

group of multi-dimensional space, and prior research 

suggests [3] that it is a good method for interpolating soil 

properties. RBF minimizes the surface's overall curvature 

while fitting a surface through the measured sample values. 

When there is a sharp change in the surface values within 

proximity, RBF is ineffectual. In this study, the most 

popular RBF, CRS (completely regularised spline), was 

chosen. 

A radial basis function (RBF) is a mathematical function 

that takes a vector as input and outputs a scalar value. The 

name "radial" refers to the fact that the function's value 

depends on the distance between the input vector and a 

center point. The general form of an RBF is:  

 

 
 

Here, ϕ(r) represents the output value of the RBF, ||x - c|| 

denotes the Euclidean distance between the input vector x 

and a center point c, and f is a univariate function that 

determines the shape of the RBF. 

 

2.4 Data validation: RBF [3] interpolation method 

performance was assessed using the cross-validation 

approach. Two datasets made up of the sample points were 

randomly created; one was used to train a model, and the 

other was used to evaluate the model. The training and 

validation sets must overlap in successive rounds so that 

each data point can be validated to reduce variability [12,13]. 

For each of the generated topsoil prediction [9] maps, the 

root-mean-squared error (RMSE) and the goodness of 

prediction were determined as indicators of accuracy and 

performance, respectively. When its value tends to zero, the 

least RMSE [20] values are used to assess a prediction 

model's fitness. 

 

 RMSE =  

 

Where 0i is the observed value and Si is the predicted value, 

N is the Number of samples. 

 

3. Results and Discussion 

The statistical [14] methods were analyzed by initially 

visualizing the histograms of the soil samples in the GIS 

environment (for normal distribution) and calculating the 

descriptive statistics (Table 1). 

 
Table 1: Descriptive statics of the soil parameters 

 

Variable Min Max Mean S.D. Skew. Kurto. 1st Quartile Median 3rd Quartile 

pH 7.3 8.9 8.29 0.34 -0.97 4.33 8.2 8.3 8.5 

EC 0.001 0.07 0.013 0.01 2.24 7.32 0.003 0.006 0.017 

SM% 0.11 18.87 2.16 4.08 3.37 14.04 0.45 0.85 1.58 

SOC% 0.41 5.29 2.22 1.27 0.87 2.98 1.18 1.88 3 

 

3.1 pH 

Measured using an electrometric technique that involves 

comparing the test solution's e.m.f. (millivolts) to that of the 

reference buffer. Generally referred to as the soil solution's 

active hydrogen ion's (H+) negative logarithm. It gauges the 

sodicity, acidity, or neutrality of the soil. It is significant 

because it improves the soil's nutritional status. Acidic 

nature is generally indicated by low pH readings, and 

alkaline nature [19] by higher values. In the study, it was 

found that the majority of the sites (Fig. 3) indicated that the 

soil was alkaline [18]. Values varied from 7.3 to a maximum 

of 8.9, with 8.29 serving as the average (Table 1). 

According to another source [8] the hydrogen and aluminium 

ions that remain after basic cations and other nutrients are 

lost to erosion and leaching are what cause the soil to 

become acidic. A particular pH range favors the majority of 

microbial activities and soil processes. 

 

3.2 EC 

It is measured to determine the ionic content of the soil 

sample. The value, which is often expressed in dS.m-1, 

provides details [19] on the total quantity of the soluble salts. 

Salted soils are often divided into groups based on two 

criteria: total soluble salt content and sodium absorption 

ratio. Analyses can be used to determine very high values in 

salts with increased organic matter or sodium contents. 

From the result obtained the range was observed as 0.001-

0.07 dS.m-1 with 0.01 as deviation from the mean range. 

The variations are mainly due to the salinity level, water 

content, cation exchange capacity, and temperature. The 

trend of conductivity is quite different from soil pH as it is 

more variable in the study area. 

 

3.3 SM% 

Soil moisture is the water content present in soil particles 

which is also an important parameter. The exceeding and 

lower values both hinder the growth phase [19] of soil 

microbes as well as plants. The values range was observed 

to be 0.11-18.76% (mean=2.16) with a CV of 16.713. 

According to the results observed, it can be concluded that 

the variations were in the moderate range throughout the 

study area. Temperature variations and vegetation cover can 

affect a lot to this parameter [19]. By regulating water 

retention and flow in the soil profile, soil type can affect soil 

moisture. For instance, soils with a high percentage of clay 

tend to have a higher ability to hold onto water, whereas 

sandy soils may have a higher rate of water movement but 

have a lesser ability to hold onto water. 

 

3.4 SOC% 

Gives the amount of organic [2] carbon percent present in the 

soil, calculated by the Walkley and Black [6] method. It is 

one of the important parameters [19] which decides the health 

of the soil. The higher values correspond [2] to a good humic 

and porous soil that is required for plant growth. It also 

facilitates soil microbial growth. The values of SOC% are 

quite variable likewise in EC, here the results show different 

patches which are quite separable and are not have an in-

between value. The pattern of only this variable was quite 

different from the rest, most of the area has shown to have 
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lower values at maximum locations to moderate ranges at 

few. The range of SOC% was observed as 0.32-5.29, with a 

mean of 2.22 and 1.27 as standard deviation from the 

observations. Temperature is an important phenomenon as 

Warmer temperatures tend to boost microbial activity, 

which speeds up the decomposition of organic matter and 

lowers SOC levels. Cooler temperatures, on the other hand, 

can sluggish microbial activity and decrease the rate of 

decomposition. SOC levels can also be impacted by soil 

moisture levels. The microbial activity in soils has a 

tendency to be lower when they are overly dry. On the other 

hand, excessive soil moisture can impede decomposition 

since there is less oxygen available, which raises SOC 

levels. SOC levels can be impacted by the presence and 

development of vegetation since plants can enrich the soil 

with organic matter through their roots and above-ground 

biomass. Plants may release more organic compounds into 

the soil through their root systems during the growing 

season when they are actively absorbing nutrients, which 

can raise SOC levels. SOC levels can shift as a result of 

actions like tillage or changes in land usage. In general, soil 

disturbance can speed up the breakdown of organic matter 

and result in lower SOC levels. For a better understanding 

of the measured and predicted value, a regression function 

(Table 2) is applied and the errors were predicted from the 

same (Fig. 2).

 

 
 

Fig 2: Scatterplot of measured values with the predicted values 
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Fig 3: Geostatistical variation in soil parameters with Radial Basis Function. 
 

The regression function applied provides a better idea of the 

actual ground variations [11, 15] and their relationship with 

applying distance. According to the results obtained the best 

error output was of soil EC with a mean of 0.00051 and 

RMSE of about 0.0192. The results were finally analyzed on 

the basis of RMSE error which gives a trend of 

EC>pH>SOC%>SM%. In Table 2, Y represents the 

dependent variable and X is the explanatory variable. 

Table 2: Interpolation parameters with Kernel function 

(Completely Regularized Spline) 
 

Variable Mean error RMSE Regression function 

pH -0.010 0.422 Y= -0.136 * x + 9.444 

EC 0.00051 0.0192 Y= -0.0595 * x + 0.0141 

SM% -0.0817 4.350 Y=-0.0414 * x + 2.0642 

SOC% 0.0664 1.179 Y= 0.3776 * x + 1.2865 
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4. Conclusion 

From the aforementioned findings, it can be inferred that the 

geostatistical technique, which applies both descriptive 

statistics and predictive analysis, enhanced the field-scale 

description of spatial variability. The distribution of soil 

properties in non-sampled sites based on sampled data was 

successfully explained by the RBF maps of soil properties. 

Precision information, environmental monitoring, and 

model development all depend on having a thorough 

understanding of the spatial distribution and precise 

mapping of soil attributes at a broad scale. This work 

demonstrated how soil parameters, including pH, electrical 

conductivity (EC), soil moisture (SM %), and soil organic 

carbon (SOC), were fitted into geostatistical models. It was 

demonstrated through cross-validation using RMSE that 

spatial prediction of soil parameters is preferable to 

assuming the mean. The findings imply that the sample 

distance in this study is enough for interpolation and that the 

RBF interpolation can directly disclose the geographical 

distribution of soil attributes. Future research is nonetheless 

required to define spatial variability on a broader scale and 

comprehend the variables influencing the spatial variability 

of soil parameters. Since a huge sample size is practically 

unachievable, interpolation techniques are an excellent way 

to forecast the sites that were not sampled. For the soil 

variable prediction map, the RBF interpolation method's 

results were satisfactory. Due to these findings, 

geostatistical analysis is suggested as a method for future 

soil sampling to explore the spatial variability of soil 

variables. 
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