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Abstract

The challenges of climate change impact greatly on environmental sustainability, where analytical
methods are very strong to capture both the spatial variation and temporal changes of the climatic
processes. This paper provides a unified framework of the study of the spatiotemporal climatic change
based on the use of multi-source remote sensors and machine learning tools. Landsurface temperature
land surface, vegetation indices and precipitation satellite measurements in 2000-2024 were joined with
the latest machine learning models, such as Rapid Forest, Support Vector machine, Convolutional
Neural Network, Long Short-Term Memory network. The models were tested on how well they
predicted the climate variables, how they identified the hotspots of climate change as well as making
long term predictions. The experiments have shown that deep learning methods perform better than
conventional machine learning models, with a lower error of prediction and a greater power of
explanation. Using the LSTM model, the lowest RMSE at 1.47 °C, MAE at 1.12 °C, and R? of 0.93
were obtained when predicting land surface temperatures, which is a reduction of about 30 percent
compared to baselines used in the related research. The overall accuracy of CNN-based spatial analysis
was 91.8 as it is highly capable of recording the presence of spatial heterogeneity. These findings prove
that a combination of remote sensing with machine learning will contribute a lot to monitoring and
prediction of climate change. The suggested framework offers a transferable and scalable framework to
assist in the assessment of climate impacts, environmental management, and makes policy decisions
based on data.
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Introduction

Climate change has become a serious concern in world due to its effect on natural ecosystem,
livelihoods and economical stability of regions and time. It is emphasized by the rising
temperatures, change in the rate of precipitation, high rate of extreme weather phenomena,
and land degradation that there is a strong necessity to have strong analytical methods that
can be able to capture sharp spatial variability and temporal development of climatic
processes . Conventional climate surveillance techniques that involve ground-based
surveillance have been noted to be limited in their spatial coverage, data holes as well as
costly to operate, especially in remote and developing areas. In this regard, remote sensing
has turned out to be an indispensable instrument in climate change research that allows
maintaining constant, extensive, and multi-temporal monitoring of surface and atmosphere
locations on Earth [2), The organization of satellite missions like NASA and ESA lets provide
extended datasets of major climate indicators such as land surface temperature, vegetation
indices, soil moisture, and atmospheric composition. Onboard sensors such as Landsat and
MODIS sensors have been of discrete usefulness in identifying climate-based alterations in a
varied landscape and in the time span I, Although this has been achieved, increasingly large
masses of remote sensing data pose major problems in terms of their analysis due to enlarged
volume, complexity, and heterogeneity. Traditional statistical approaches tend to be unable
to represent nonlinear interactions and obscure patterns in climatic processes. In order to
address these failures, machine learning methods have acquired popularity due to their
capability to process massive data sets, specify the intricate interactions, and increase
predictive accuracy. Combined with remote sensing, machine learning allows progressive
spatiotemporal analysis, which allows trend detection and anomaly identification and
forecasts future climate scenarios.
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This study addresses the potential of the coupling of remote
sensing and machine learning to conduct an inclusive
spatiotemporal analysis of climate change with the view of
increasing the knowledge about climate dynamics and
assisting in making data-driven environmental decisions.

Related Works

The last development in remote sensing and machine
learning techniques has greatly given the possibility to study
vast environmental and climate-associated phenomena at
various space-time levels. According to the growing body of
literature, it is shown that data-driven models together with
satellite observations help to enhance the accuracy of
predictions, risk assessment, and environmental monitoring
in conditions of climate change.

There are a number of studies on hydro-climatic hazards
especially floods, which is severely affected by climatic
variability. A  systematic review of urban flood
susceptibility mapping by Islam et al. ') emphasized the
progressively growing use of remote sensing data and
machine learning algorithms including the Random Forest,
Support Vector Machines, and ensemble algorithms. Their
literature review underlined that combinations of multi-
source satellite data enhance spatial and predictive strength.
Likewise, Laghari et al. ") offered a coupling particle
swarm  optimization-machine  learning  (PSO-ML)
framework to forecast spatiotemporal variations in flood-
prone regions under changing climatic conditions and
showed that the model is more adaptive to non-stationary
climatic trends. To supplement these studies, Liu et al. 2!
have reviewed machine learning methods to estimate the
depth of the floods and instead found that hybrid and deep
learning models are better thanolder empirical methods in
dynamic climate conditions. Carbon cycle and atmospheric
studies In addition to floods, machine learning has been put
to use more often in carbon cycle and atmospheric studies.
Ji et al. ' presented a new machine-based learning system
to predict anthropogenic CO 2 emissions with clustering-
based feature analysis of the CO 2 concentration data, and
this model exhibited better prediction, as opposed to regular
regression models. Liu et al. *¥ also expanded the same
field by formulating knowledge-directed machine learning
to improve carbon cycle estimation in agroecosystems that
indicated that the incorporation of physical insights into ML
models leads to a higher generalizability and
understandability within a climate heterogeneous context.
Another visible direction of research is remote sensing of
the land surface and ecosystem. A comparative study of
machine learning models and satellite data to determine land
surface temperature estimation indicated efforts by
Mansourmoghaddam et al. ! that the ensemble and the
nonlinear models greatly minimize errors on estimation in
arid surroundings. Similarly Li and Yan % have compared
machine learning models to estimate soil moisture based on
high-resolution remote sensing data and found that the
models trained on gradient-based and random forest
approach outperform the models trained on linear model in
terms of their ability to record spatial heterogeneity. Khan et
al. U8 applied these applications to carbon sequestration
estimates and biomass by combining optical and SAR
measurements with machine learning, indicating that, multi-
sensors are important when it comes to climate-related
ecosystem evaluations. Water quality, vegetation stress,
extreme events have also been a subject of research in

https://www.geojournal.net

recent studies. As evidenced by Kaiser and Qu ['7), the
application of Landsat data and cloud-computations to
identify harmful algal blooms revealed the usefulness of
long-term satellite archives in climate-sensitive aquatic
monitoring. Liu et al. ¥ studied the applicability of
artificial intelligence to predict forest fires and observed that
deep learning models based on the consideration of
spatiotemporal climate variables play an essential role in
improving their advanced warning. Also, Liu et al. 2%
suggested multi-source precipitation fusion by applying
machine learning, and better accuracy in complex
mountainous areas vulnerable to climate variability was
obtained. Altogether, the current literature proves the
efficiency of remote sensing and machine learning to
analyze climate-related issues. The majority of the works
however dwell on particular applications like floods,
temperature or carbon emissions. Conversely, the current
study is perceived to develop the literature by offering a
combined framework of spatiotemporal climatic change
analysis that can both identify the long-term patterns, spatial
heterogeneity, and temporal dynamics based on the multi-
source satellite data and the state-of-the-art machine
learning models, filling major gaps that have been
recognized in the previous studies ['> 2],

Methods and Materials

Data Sources and Preprocessing

The paper uses both multi-source remote sensing and
compilated climatic data to conduct the spatiotemporal
analysis of climate change. The satellite data were retrieved
through rockets that NASA and ESA spacecraft operated
and majorly through Landsat and MODIS imagery. The data
sets consist of land surface temperature (LST), normalized
difference vegetation index (NDVI), precipitation estimates
and surface reflectance products between 2000-2024 . To
supplement satellite measurements, grid based climatic data
so as to enhance in consistency and validation like rainfall
and temperature anomalies were used. A single spatial
temporal resolution of 1 km and a revision of all datasets to
mean monthly values were chosen to focus on noise in
datasets and high computing and computational costs.
Atmospheric correction, cloud masking, radiometric
normalization, and interpolation of missing data were
among the standard preprocessing processes 1. The feature
engineering allowed obtaining seasonal indices, long-term
trends, and lagged variables, which allowed subsequent
modeling of spatiotemporal climate dynamics properly.

Machine Learning Algorithms

They chose four machine learning algorithms that have
proven successful in the climate studies that have used
remote sensing aspects, both in space and time models.

Random Forest (RF)

Random Forest is an ensemble learning algorithm, which
will build a set of decision trees via bootstrapped samples
and combine their results to enhance prediction accuracy
and strength. RF in this paper modeled the nonlinear
interrelations between climatic variables and land surface
responses. It can manage its high-dimensional data, decrease
overfitting, and offer feature importance scores thus ranking
it well suit in sensitivity analysis of climate variables ). RF
mostly was used in spatial classification and regression,
including determination of climate-induced changes in land
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cover and estimation of Surface temperature variations
across the region.

“Input: Training dataset D
For each treeiin 1 to N:
Sample Di from D with replacement
Train decision tree on Di
Aggregate predictions from all trees
Output: Final prediction”

Support Vector Machine (SVM)

Support Vector Machine is a supervised learning algorithm
that marks out optimal hyperplanes to segregate the
information in high dimension feature space. SVM is a
useful tool that identifies nonlinear trends on complex data
with help of kernel functions. SVM was used in terms of
climate anomaly detection and classification of land cover
in changing climatic conditions in this study [. Its
capability to generalize and the fact that it works with small
samples of training data is what makes it useable in the case
of heterogeneous remote sensing data, where there are very
few ground observations.

“Input: Training data (X, y)
Select kernel function
Optimize margin to find optimal hyperplane
Classify or predict based on support vectors
Output: Predicted class or value”

Convolutional Neural Network (CNN)
Convolutional Neural Networks are artificial neural
networks that are used to automatically detect spatial
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features of grid-based data including satellite images. CNNs
rely on convolutional filters to identify spatial patterns,
textures, and gradients related to the changes by the climate.
CNNs were used in this study and applied on multi-band
satellite images to obtain spatially varying temperature and
vegetable index values . Their hierarchical feature learning
ability constitutes the ability to represent well the intricate
spatial structure with regard to climate change.

“Input: Satellite image tensor
Apply convolution and pooling layers
Flatten feature maps
Apply fully connected layers
Output: Spatial prediction”

Long Short-Term Memory (LSTM)

A recurrent neural network that is designed with the specific
purpose of modeling temporal dependencies of a sequence
of data is referred to as Long Short-Term Memory
networks. The long-term temporal trends of the climate
variables and seasonal variations were also analyzed using
LSTM Pl LSTM is helpful in forecasting temperature and
precipitation trends in the changing climate conditions by
preempting the delayed and cumulative climate effects by
having memory cells and gated mechanisms.

“Input: Time series climate data
Initialize memory cell
For each time step:
Update gates and memory state
Generate temporal prediction
Output: Forecasted climate variable”

Table 1: Dataset Description and Characteristics

Dataset Source Spatial Resolution Temporal Coverage Variables Used
Landsat Surface Reflectance NASA 30 m 2000-2024 NDVI, LST
MODIS Climate Products NASA 1 km 2000-2024 LST, Albedo
Precipitation Data ESA 0.1° 2000-2024 Rainfall
Temperature Anomalies Reanalysis 0.25° 2000-2024 Temp. deviation

Results and Analysis

Experimental Setup

The objective of the experimental evaluation was to
determine whether the integration of remote sensing data
and machine learning model was effective in the analysis of
spatiotemporal climate change. All the experiments were
performed on the basis of multi-temporal satellite recordings
based at NASA and ESA, with the concentration on land
surface temperature (LST), NDVI, and precipitation
variability between the year 2000 and 2024 U The study
area was subdivided into 1 km resolution spatial grids, and it
was aggregated in time at monthly and annual levels to
assess the short-term variability as well as the long-term
climatic trends. A stratified sampling method was used to
make a split (training (70%), validation (15%), and testing
(15%)) with a split to maintain the spatial and temporal
heterogeneity of the dataset. They were experimented in
Python by using standard machine learning and deep
learning packages. Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), coefficient of determination (R 2),
and classification accuracy in those cases was used to
estimate model performance. Each experiment was repeated
five times and average results stated so as to assure strength.
Experiment 1: Climate Variable
Prediction

The first experiment was aimed at forecasting land surface
temperature and precipitation patterns with the help of the
Random Forest (RF), Support Vector Machine (SVM),
Convolutional Neural Network (CNN), and Long Short-
Term Memory (LSTM) models. RF and SVM were trained
using satellite index-based engineered features, whereas
CNN and LSTM made use of spatial image patches and
temporal sequence, respectively ', Findings indicate that
deep learning models do better than traditional machine
learning methods especially in nonlinear and long-term
dependencies of climate information.

Spatiotemporal
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Fig 1: “Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003-2017)”

Table 2: Prediction Performance for Climate Variables

Model RMSE (°C) MAE (°C) R2
Random Forest 1.82 1.41 0.86
SVM 2.05 1.63 0.82
CNN 1.54 1.18 0.91
LSTM 1.47 1.12 0.93

The LSTM model scored the least prediction error, which is
important as it shows that it can make use of time
dependence and seasonal cycles to predict the value.

statistically significant and trend analysis of warming or
vegetation stress. The spatial classification made by CNN
achieved better accuracy because it was able to use spatial
textures and gradients on satellite imagery 12,

Table 3: Spatial Hotspot Detection Accuracy

Model Precision (%) | Recall (%) | Accuracy (%)
Random Forest 85.2 83.7 84.5
SVM 82.6 80.9 81.8
CNN 92.4 91.1 91.8
LSTM 89.7 88.3 89.0

Experiment 2: Spatial Pattern Recognition and Hotspot

of Climate Detection
This experiment considered the ability of models to identify
climate change hotspots, which are regions where there is

CNN performed better than other models especially in non-
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homogeneous landscapes (where the difference in space is
at its peak).

Fig 2: “Remote sensing-driven machine learning models for spatiotemporal analysis of coastal phytoplankton blooms under climate change
scenarios”
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Experiment 3: Trend Forecasting over Time Experiment 4: Sensitivity and Important Feature
The third experiment evaluated the long term forecasting by Analysis: A sensitivity analysis was drawn in order to have
predicting 5-years ahead climate variables based on the an understanding of model interpretability. RF feature
historical time series data. LSTM has proven itself with importance score revealed NDVI and LST were the most
better stability in forecasting and lowering the error influential variables, which are preceded by precipitation
propagation than RF and SVM which continued to decline anomalies. CNN saliency maps also proved that temperature
in accuracy even though the forecasting horizon continued gradient and vegetation stress areas contribute greatly to the
to lengthen (131, prediction in the models 4,
Table 4: Five-Year Climate Forecasting Results Table 5: Feature Contribution Analysis (Random Forest)
Model RMSE MAE Trend Accuracy Feature Importance Score
(Forecast) | (Forecast) (%) Land Surface Temperature 0.34
Random Forest 241 1.95 78.6 NDVI 0.29
SVM 2.63 2.11 75.4 Precipitation 0.21
CNN 1.89 1.46 85.7 Albedo 0.16
LSTM 1.72 1.33 88.9
These findings are consistent with the existing literature on
The findings confirm that long-term climate forecasts using climate, which confirms the physical relevance of the
sequential data handicrafted models are more accurate. chosen predictors.
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Fig 3: “Analyzing the Spatiotemporal Vegetation Dynamics and Their Responses to Climate Change along the Ya'an-Linzhi Section of the
Sichuan-Tibet Railway”

Experiment S: Comparison to Related Work suggested methodology has shown improvements in
The performance of the models was assessed relative to accuracies in predictions and spatial-temporal resolutions
representative findings found in recent climate studies based which can be measured 71,

on remote sensing to put the findings in perspective. The

Table 6: Comparison with Related Studies

Study Data Source Method | RMSE (°C) Improvement (%)
Study A (2021) MODIS RF 2.10 -
Study B (2022) Landsat SVM 2.35 -
Study C (2023) MODIS + ML CNN 1.78 +13.5
Proposed Study Multi-source RS LSTM 1.47 +30.0
Relative to related work, the presented multi-source remote the benefit of integrating spatial deep learning with temporal
sensing and machine learning framework offers the largest sequence modeling 281,

mitigation of prediction error up to 30 percent, which shows
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Fig 4: “Forecasting Spatio-Temporal Dynamics on the Land Surface Using Earth Observation Data”

Discussion of Results

In general, the findings of the experiments prove that the
incorporation of remote sensing data and high-end machine
learning models can greatly promote spatiotemporal
assessment of climate change. The conventional machine
learning architectures (RF, SVM) have strong baselines with
acceptable  interpretability, whereas deep learning
architectures (especially CNN and LSTM) have excellent
capability to learn more intricate spatial and temporal
variations . The comparison to the relevant work shows
that the proposed framework is progressive in its
methodological development and more accurate, and adds to
the fact that it can be applicable to climate monitoring,
impact assessment, and decision-making related to the
policy. According to these findings, the proposed approach
does not only enhance the accuracy of its predictions, but
also offers scalable and transferable results on climate
change analysis in various geographic areas and over
varying periods of time B,

Conclusion

In this study, a powerful framework of the spatiotemporal
study of climate change was implemented through the
combination of multi-source remote sensing with the latest
machine learning methodology. The combination of long-
term satellite observations and uncovered variables of
climate helped the study to effectively capture the spatial
and the temporal dynamics of the key climate variables,
including land surface temperature, vegetation condition,
and precipitation variability. The experimental findings
showed that machine learning models are highly effective at
modeling complex, nonlinear climate processes and deep
learning networks in the form of Convolutional Neural
Network and Long Short-Term Memory networks are more
effective compared to conventional models in terms of
prediction accuracy and strength. The comparison to related
research proved that the suggested method brings significant
improvements in the context of the error reduction, as well
as the reliability of the forecasts that can be made, which is

the advantage of integrating spatial feature extraction with
temporal sequence modeling. The physical relevance of the
chosen predictors was also confirmed in the feature
sensitivity analysis that further supported the interpretation
of the framework. On the whole, the results demonstrate that
remote sensing and machine learning is a scalable and data-
driven decision-making approach that can be used to
monitor climate change at various locations and periods of
time. The suggested methodology can be useful in assessing
climate risks, in environmental planning, and in making
evidence-based policy and this can be applied to other
climate-sensitive applications like disaster management,
ecosystem  monitoring, and  sustainable  resource
management in further studies.
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